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Abstract How can we determine the adequacy of a probabilistic coherence mea-

sure? A widely accepted approach to this question besides formulating adequacy

constraints is to employ paradigmatic test cases consisting of a scenario providing a

joint probability distribution over some specified set of propositions coupled with a

normative coherence assessment for this set. However, despite the popularity of the

test case approach, a systematic evaluation of the proposed test cases is still missing.

This paper’s aim is to change this. Using a custom written computer program for the

necessary probabilistic calculations a large number of coherence measures in an ex-

tensive collection of test cases is examined. The result is a detailed overview of the test

case performance of any probabilistic coherencemeasures proposed so far. It turns out

that none of the popular coherence measures such as Shogenji’s, Glass’ and Olsson’s,

Fitelson’s orDouven andMeijs’ but two rather unnoticedmeasures performbest. This,

however, does not mean that the other measures can be rejected straightforwardly.

Instead, the results presented here are to be understood as a contribution among others

to the project of finding adequate probabilistic coherence measures.

1 Introduction

Probabilistic coherence measures are functions assigning real numbers to sets of

propositions under some joint probability distribution. At best, the assigned numbers

represent how good the respective propositions fit or hang together, agree with or

mutually support each other—briefly, how coherent the propositions are. At worst,

they do not.Hence, the development of probabilisticmeasures of coherence as pursued

by formal philosophers such as Douven and Meijs (2007), Fitelson (2003, (2004),

Glass (2002), Meijs (2005), Olsson (2002), Roche (2013), Schippers (2014),
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Schupbach (2011) or Shogenji (1999) can be understood as a search for a quantitative

explication—in the sense of Carnap (1950)—of the concept of coherence. Of course,

in order to be an explication at all, the explicandum—here, the concept of coherence—

and the explicatum—here, a probabilistic coherence measure—have to be similar

(besides the expclicatumhaving to be exact, fruitful and simple). To ensure this kind of

similarity several authors (e.g. Bovens andHartmann 2005; Fitelson 2004;Moretti and

Akiba 2007; Siebel and Wolff 2008) have formulated adequacy constraints for

probabilistic coherence measures (for an overview cf. Schippers 2014). These

constraints are based on considerations regarding the relationship between the

characteristics of some set of propositions such as being equivalent, inconsistent or

being tied together by explanatory, probabilistic relevance, deductive entailment or

other inferential relations (cf. BonJour 1985) and its degree of coherence. Adequacy

constraints can therefore be considered as serving as reference points for the

evaluation of a coherence measure’s adequacy.

Another common practice, however, besides formulating general desiderata for

probabilistic coherence measures in order to evaluate their adequacy is to employ test

cases (cf. e.g. Bovens and Hartmann 2003; Meijs 2005; Siebel 2004). Test cases for

probabilistic coherence measures are paradigmatic situations providing information

about a specified set of propositions such that the values of a probabilistic coherence

measure for this set can be computed. Most important, test cases come with a

normative coherence assessment for the respective set based on considerations

regarding the situation in which the set is located. The evaluation is then quite simple.

If some measure’s values in a certain test case are in accordance with the normative

coherence assessment provided by this case and the assessment has strong intuitive

support, then the measure remains a candidate for an adequate measure of coherence.

If a measure’s value is not in accordance with the assessment, its credibility as an

adequate coherence measure decreases. Though this method is very appealing, it has

merely been used for a limited number of measures in single test cases. The main

reasons for this shortcoming are the time consuming computational effort and the

possibility of miscalculation. Thus, for the purpose of this investigation a custom

written computer program in GNU Octave (the source code is free via the author) has

been used to circumvent these two problems and to be able to test any extant

probabilistic coherence measure in any test case proposed so far. Additionally, the

program allows for an easy implementation of future coherence measures as well as

future test cases. Hence, besides evaluating probabilistic coherence measures with

respect to a collection of test cases it can also be considered a subordinate aim of this

paper to demonstrate the capabilities of the program.

The structure of this paper is rather straightforward. In Sect. 2 the notion of a

probabilistic coherence measure is introduced formally. Then, all probabilistic

coherence measures that have been proposed in the literature are presented. In

addition, this collection is complemented with measures that have not been suggested

as coherence measure butmight be promising candidates. In Sect. 3 the notion of a test

case is introduced. After that each test case is presented followed by every measure’s

performance in the respective case. Finally, in Sect. 4 the results are summarized and

critically discussed with respect to the issue of determining the adequacy of

probabilistic coherence measures.
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2 Probabilistic Measures of Coherence

Before introducing the notion of a probabilistic coherencemeasure the necessary formal

framework needs to be established first. Let L be a classical propositional language

consisting of atomic formulae closed under some functional complete selection of

classical logical connectives such as f:;^g where connectives like _ or ! can be

defined in terms of the selection. Let then 2L denote the powerset of L, i.e. the set of all

subsets of L, let furthermore P : L ! ½0; 1� be a probability function with conditional
probability defined as Pðx1jx2Þ ¼ Pðx1 ^ x2Þ=Pðx2Þ for x2 2 L with Pðx2Þ 6¼ 0 and let

P denote the set of all probability functions over L. In order to define the domain of a

probabilistic coherence measure a further restriction is needed, sometimes referred to

as ‘‘Rescher’s principle’’ (Olsson 2005, 17). According to this principle, ‘‘[c]oherence

is ½. . .� a feature that propositions cannot have in isolation but only in groups,

containing several—i.e. at least two—propositions’’ (Rescher 1973, 32). Let therefore

be 2L� 2 ¼ fX � 2L : jXj � 2g. A probabilistic coherence measure can then be defined

as a function—more specifically, a partial function due to some undefined function

values—C : 2L� 2 � P ! Rmapping pairs ðXi;PiÞ onto real numbers where Xi is a set

of propositions under some joint probability distribution Pi.

Now suppose we would like to assess the degree of coherence of some finite,

non-empty, non-singleton set X ¼ fx1; . . .; xng. According to Shogenji (1999), this

can be done the following way: take the joint probability of X’s members and divide

it by the product over all marginal probabilities of the respective propositions. This

quantifies the propositions’ deviation from their joint probabilistic independence:

CshoðXÞ ¼
P

Vn

i¼1

xi

� �

Qn

i¼1

PðxiÞ

In order to overcomedifficulties of Shogenji’smeasure associatedwith its insensitivity for

subsets of propositions as pointed out by Fitelson (2003), Schupbach (2011) has suggested

the followinggeneralizationofShogenji’smeasure: to assess thedegreeof coherenceofX,

apply a log-normalized version of Shogenji’s coherence measure to each set X0
ij which

is the i-th subset of X and contains j� 2 proposition. For each of them divide its

coherence value by the number of sets with jmembers, sum up the resulting values and

divide this sum by X’s cardinality minus one ignoring singleton sets:

CschðXÞ ¼

Pn
j¼2

P

n

j

� �

i¼1
log CshoðX0

ijÞð Þ
n

j

� �

n� 1

Glass (2002) and Olsson (2002) have proposed a different account. In this case, in

order to compute the degree coherence of X simply divide the probability of the
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conjunction by the probability of the disjunction over X’s members. Set-

theoretically speaking, this can be understood as quantifying the propositions’

relative overlap:

CgoðXÞ ¼
P

Vn
i¼1 xi

� �

P
Wn

i¼1 xi
� �

Based on the same idea, but less complicated, Meijs (2006) has suggested the

following generalization of the coherence measure by Glass and Olsson: in order to

assess the coherence of X, take the straight average over all values of the Glass–

Olsson measure applied to every subset X0
i of X with jX0

i j � 2:

CmeiðXÞ ¼
Pð2n�nÞ�1

i¼1 CgoðX0
iÞ

ð2n � nÞ � 1

A whole family of coherence measures can be obtained using an approach sys-

tematically developed by Douven and Meijs (2007). According to their approach,

coherence is to be understood as average mutual support. Since there is a variety of

probabilistic measures of support (for an overview cf. Crupi et al. 2007) one can

easily obtain a huge collection of candidates for coherence measures based on them.

The basic idea runs as follows: to assess the coherence of X, consider all pairs

ðX0;X00Þi where X0 and X00 are non-empty, disjoint subsets of X. For each pair, take

the conjunctions over the propositions contained in the respective set and calculate

the average degree of support according to some chosen probabilistic support

measure S, i.e. a two-place function that is supposed to quantify the degree to which

its first argument, some proposition x1 is supported by its second argument, another

proposition x2:

CSðXÞ ¼

Pð3n�2nþ1Þ�1
i¼1 S

V
xj2X0 xj;

V
xk2X00 xk

� �

i

� �

ð3n � 2nþ1Þ � 1

In the literature several measures of support have been suggested as a foundation for

coherence measures. For his coherence measure CSfit Fitelson (2004) uses a case-

sensitive variation of Kemeny and Oppenheim’s (1952) measures of factual support:

Sfitðx1; x2Þ ¼

Pðx2jx1Þ � Pðx2j:x1Þ
Pðx2jx1Þ þ Pðx2j:x1Þ

if x2 0 x1 and x2 0 :x1

1 if x2 ‘ x1 and x2 0 ?
�1 if x2 ‘ :x1

8
>>><

>>>:

Douven and Meijs (2007), by contrast, prefer Carnap’s (1950) difference measure of

support for their favourite coherence measure here denoted CScar :
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Scarðx1; x2Þ ¼ Pðx1jx2Þ � Pðx1Þ

Notice that due to the symmetry of the average mutual support approach Douven

and Meijs could also have used the counterpart of Carnap’s difference measure by

Mortimer (1988) where only the two arguments are interchanged. The same holds

for Levi’s (1962) corroboration measure which can easily be shown to be identical

to Carnaps’s difference measure. As we will see, this also holds for other coherence

measures based on measures of evidential support. Besides their favourite coherence

measure Douven and Meijs also investigated other measures of support as foun-

dations for coherence measures without advocating them. One of them is Keynes’

(1921) relevance quotient:

Skeyðx1; x2Þ ¼
Pðx1jx2Þ
Pðx1Þ

Here again, instead of using Keynes’ measure one could obtain the same coherence

measure using Kuipers’ (2000) symmetrically identical ratio measure or Finch’s

(1960) ratio measures of evidential support which would yield identical function

values shifted by �1. It is also worth noticing that in the case of sets of two

propositions the coherence measures resulting from using these confirmation

measures are identical to Shogenji’s coherence measure or shifted by �1. Another

measure taken into consideration by Douven and Meijs is the well-known likelihood

ratio measure by Good (1984) for which instead Joyce’s (2008) odds-ratio measure

could also have been used:

Sgooðx1; x2Þ ¼
Pðx2jx1Þ
Pðx2j:x1Þ

The aforementioned support measure are based on an incremental—as opposed to

an absolute—understanding of evidential support. More recently, Roche (2013)

proposed his favourite candidate for a coherence measure CSroc based on Douven

and Meijs’ approach employing a case-sensitive notion of absolute support, namely

the conditional probability:

Srocðx1; x2Þ ¼
Pðx1jx2Þ if x2 0 x1 and x2 0 :x1
1 if x2 ‘ x1 and x2 0 ?
0 if x2 ‘ :x1

8
><

>:

Another more recent coherence measure CSsch has been developed by Schippers

(2014) based on his own measure of support:

Sschðx1; x2Þ ¼

Pðx1jx2Þ � Pðx1j:x2Þ
1� Pðx1j:x2Þ

if Pðx1jx2Þ� Pðx1Þ

Pðx1jx2Þ � Pðx1j:x2Þ
Pðx1j:x2Þ

if Pðx1jx2Þ\Pðx1Þ

8
>><

>>:

The same coherence measure could have been obtained using Cheng’s (1997) causal

Power-PC measure. Notice that just like Cheng’s measure can be understood as a

Evaluating Test Cases for Probabilistic Measures of Coherence 159

123



normalization of Nozick’s (1981) measure, Schipper’s support measure can be

understood as a normalization of Christensen’s (1999) measure. This already ex-

tensive collection has been expanded by Siebel and Wolff (2008). They considered

further alleged coherence measures based on Douven and Meijs’ approach. For

instance, they used Carnap’s (1950) relevance measure:

Scar0 ðx1; x2Þ ¼ Pðx1 ^ x2Þ � Pðx1Þ � Pðx2Þ

Siebel and Wolff also investigated Nozick’s (1981) counterfactual likelihood differ-

ence measure for which the resulting coherence measure is identical to the measure

obtained when using Christensen’s (1999) counterfactual difference measure:

Snozðx1; x2Þ ¼ Pðx2jx1Þ � Pðx2j:x1Þ

Furthermore, Siebel and Wolff took into account Popper’s (1954) corroboration

measure as a foundation for a coherence measure:

Spopðx1; x2Þ ¼
Pðx2jx1Þ � Pðx2Þ
Pðx2jx1Þ þ Pðx2Þ

� 1þ Pðx1Þ � Pðx1jx2Þð Þ

And ultimately, they also included Rescher’s (1958) measure of evidential support

in their examination:

Sresðx1; x2Þ ¼
Pðx1jx2Þ � Pðx1Þ

1� Pðx1Þ
� Pðx2Þ

To make the collection complete, we will also take into account coherence measures

based on further measures of positive relevance. These include Crupi et al.’s (2007)

so-called z-measure of evidential support which has received some attention lately:

Scruðx1; x2Þ ¼

Pðx1jx2Þ � Pðx1Þ
1� Pðx1Þ

if Pðx1jx2Þ� Pðx1Þ

Pðx1jx2Þ � Pðx1Þ
Pðx1Þ

if Pðx1jx2Þ\Pðx1Þ

8
>><

>>:

Moreover, we will include Gaifman’s (1979) measure as an ingredient for a co-

herence measure:

Sgaiðx1; x2Þ ¼
Pð:x1Þ

Pð:x1jx2Þ

Rips’ (2001) measure is also included:

Sripðx1; x2Þ ¼ 1� Pð:x2jx1Þ
Pð:x2Þ

Finally, we also take into account Shogenji’s (2012) measure of justification which

according to him is also a measure of evidential support:

Sshoðx1; x2Þ ¼
log2 Pðx1jx2Þ � log2 Pðx1Þ

� log2 Pðx1Þ

160 J. Koscholke

123



In the following it will be helpful to know some of the general properties of the

introduced measures, such as their threshold value t indicating neutral coherence

and their range r (Table 1).

Two things should be mentioned here. First, any measure with a half-open or

open interval as its range cannot assign minimal, maximal or both degrees of

coherence. Second, it should also be mentioned that for the measures put forward by

Glass and Olsson, Meijs and Roche, the neutral value is to be understood in a

different way compared to the other measures. While for all measures except these

three the neutral value indicates the joint independence of the propositions in some

set, the values of the aforementioned measures indicate an equal overlap of the

propositions in question and their complement or in other words the propositions are

as coherent as their negations.

Besides these rather general properties the philosophical motivations underlying

the presented measures shall not be discussed here. For the philosophical

backgrounds and further properties of the presented measures the reader is referred

to the original papers in which the respective measures have been proposed. It is,

however, worth noticing that the variety of motivations underlying the different

proposals shows that the proponents aimed at explicating different aspects of the

concept of coherence. This indicates that there might be more more than a single

probabilistic coherence measure. Recent results by Schippers (2014) also point in

this direction suggesting that we should be pluralists with respect to the concept of

coherence and probabilistic measures of coherence. Nevertheless, it is important to

notice that the following investigation does not rely on this assumption. Rather, the

Table 1 Neutral point t and

range r
t r

Csho 1 ½0;1Þ
Csch 0 ð�1;1Þ
Cgo .5 ½0; 1�
Cmei .5 ½0; 1�
CSfit 0 ½�1; 1�
CScar 0 ½�1; 1Þ
CSkey 1 ½0;1Þ
CSgoo 1 ½0;1Þ
CSroc .5 ½0; 1�
CSsch 0 ½�1; 1�
CScar0 0 ð�1; 1Þ
CSnoz 0 ½�1; 1�
CSpop 0 ½�1; 1�
CSres 0 ½�1; 1�
CScru 0 ½�1; 1�
CSgai 1 ½0;1Þ
CSrip 0 ð�1; 1�
CSsho 0 ½�1; 1�
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results of this investigation can contribute to the question of pluralism with respect

to the concept of coherence, e.g. by examining whether there are classes of test

cases with the same underlying coherence intuition in which certain measures fail

while succeeding in others with a different intuition. For critical discussions of the

presented coherence measures see e.g. Akiba (2000), Fitelson (2003), Moretti and

Akiba (2007), Schippers (2014), Siebel (2004, 2005), Siebel and Wolff (2008). For

discussions of support measures see e.g. Crupi et al. (2007), Eells and Fitelson

(2002), Tentori et al. (2007). Having presented the test candidates we may now turn

to the test cases.

3 Test Cases and Results

The initially established formal framework enables us to introduce the notion of a test

casemore precisely. Let again a pair ðXi;PiÞ denote some set of propositionsXi under a

joint probability distribution Pi. Such pairs might be thought of as situations in which

Xi’s propositions have probabilities according to Pi. Moreover, let A denote an

assessment of the degree of coherence of some set of propositions in a certain situation,

e.g. CðXiÞShC where hC is a threshold value of a specific measure C, CðXiÞSCðXjÞ
where two sets under different probability distributions are compared or

CðX0
iÞSCðX00

i Þ with X0
i ;X

00
i � Xi and X0

i \ X00
i 6¼ ; where subsets of a set under some

distribution is examined. Then a test case is a pair T ¼
ðfðX1;P1Þ; . . .; ðXn;PnÞg; fA1; . . .;AmgÞ of a set of situations and a set of coherence

assessments.

In the following subsections the collection of 18 probabilistic coherence measure

introduced in Sect. 2 is submitted to 11 test cases from the literature. For each test

case the course will be as follows. First, the scenario together with the set of

propositions and the expected coherence assessment is described. After that the

calculated coherence values for every probabilistic coherence measure are

presented. Notice that since some function values are very small but nevertheless

relevant these values will be represented in scientific notation where e.g.

�4.26e�05 stands for �0.0000426. Finally, these results are evaluated with respect

to the coherence assessment provided for the respective case. In the last subsection

of this section the results are summarized and discussed.

Throughout this investigation positive test case results, i.e. results that agree with

the provided coherence assessment are rewarded with a score of 1 while negative

results receive a score of 0. Notice that, following Siebel and Wolff (2008)

undefined function values such as �1 or 1 are treated as if the respective measure

remained silent regarding a coherence assessment and are marked ‘‘NaN’’ standing

for ‘‘not a number’’. In such cases the score will be 0. Also notice that the

plausibility of coherence assessments provided for each test case are not going to be

subject of discussion here. This task is left for future research. The aim of this

section is to evaluate the performance of each measure in each test case under the

assumption that all normative coherence assessments are equally rational. In Sect.

3.12, however, a tentative solution for this shortcoming is offered.
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3.1 Akiba’s Die Case

Akiba (2000) has developed a test case that is supposed to show that Shogenji’s

coherence measure fails to handle certain sets of propositions adequately. The

problematic cases Akiba points out are sets that do not only contain a finite number

of propositions but also deductive consequences of these propositions. His intuition

here is that if two sets with the same cardinality consist of some proposition and

furthermore each set contains some proposition that is logically entailed by the

proposition they both have in common, then the degree of coherence of both sets

should be the same. Akiba’s test case runs as follows:

Situation: Imagine tossing a fair die and consider the following three predictions

about the outcome:

x1: The die will come up 2.

x2: The die will come up 2 or 4.

x3: The die will come up 2 or 4 or 6.

According to Akiba, the sets X1 ¼ fx1; x2g and X2 ¼ fx1; x3g should be equal with

respect to their degrees of coherence since both x2 and x3 are deductive

consequences of x1. Let us take a look at the values (Table 2).

Table 2 Results for Akiba’s die

case
X1 X2 Score

Csho 3 2 0

Csch 0.477 0.301 0

Cgo 0.5 0.333 0

Cmei 0.5 0.333 0

CSfit 0.833 0.714 0

CScar 0.5 0.333 0

CSkey 3 2 0

CSgoo NaN NaN 0

CSroc 0.75 0.667 0

CSsch 0.75 0.667 0

CScar0 0.111 0.0833 0

CSnoz 0.65 0.467 0

CSpop 0.604 0.426 0

CSres 0.15 0.133 0

CScru 0.7 0.6 0

CSgai NaN NaN 0

CSrip 0.7 0.6 0

CSsho 0.807 0.693 0
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These result are truly devastating.Akiba’s test case is not only a problem for Shogenji’s

measureof coherencebut for all consideredprobabilistic coherencemeasures.Not a single

measure satisfies Akiba’s normative coherence assessment. Most measures assign X1 a

higher degree of coherence than X2. The average mutual support measures based on

Good’s likelihood-ratio measures and Gaifman’s support measure fail because they

have non-defined function values for X1 and X2. It is worth noticing that a coherence

measure based on the joint probability, i.e. CðXÞ ¼ P
V

xi2X xi

� �
would master

Akiba’s test case. But as Olsson (2013) has shown this would be an implausible

proposal for a probabilistic coherence measure. It is also worth noticing that these

results does not necessarily have to be interpreted as a failure of all coherence

measures. Instead, it might indicate that Akiba’s coherence assessment could be

incorrect. However, as indicated before this question will not be discussed here.

3.2 BonJour’s Raven Case

Laurence BonJour’s contribution to the systematic development of coherentism

cannot be underestimated. His theory of empirical knowledge can be referred to as

the cornerstone of modern theories of coherentist justification. In his seminal The

Structure of Empirical Knowledge BonJour (1985) confronts us with an example,

that has often been used to demonstrate a set of coherent versus a set of incoherent

propositions. Bovens and Hartmann (2003) developed a probability distribution for

this example to the effect that it can serve as a test case for probabilistic coherence

measures. Consider the following two sets of propositions under the respective joint

probability distributions shown in the diagrams:

Situation 1:

x1.1 : All ravens are black.
x1.2 : This bird is a raven.
x1.3 : This bird is black.

9/64

27/160 9/64

x1.1

x1.2 x1.3

1/16
3/640

3/160

27/64

Situation 2:

x2.1 : This chair is brown.
x2.2 : Electrons are negatively charged.
x2.3 : Today is Thursday.

9/64

9/64 9/64

x2.1

x2.2 x2.3

1/64
3/643/64

3/64

27/64

Since the set X2 ¼ fx2:1; x2:2; x2:3g consists of propositions that have nothing to

do with each other, whereas the propositions in X1 ¼ fx1:1; x1:2; x1:3g are tied
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together by relevance or entailment relations, BonJour in his original example as

well as Bovens and Hartmann in their probabilistic version argue that X2 should be

less coherent than X1 (Table 3).

As the table indicates, only two measures fail in this test case, namely the average

mutual support measures based on Good’s likelihood-ratio measure and on

Gaifman’s evidential support measure. Both measures have non-defined function

values for X1. All the other measures are doing a good job. Moreover notice that as a

further plus all measures assign values indicating incoherence or neutral coherence

to X2.

3.3 Bovens and Hartmann’s Tweety Case

In their Bayesian Epistemology Bovens and Hartmann (2003) have presented a

variety of test cases for probabilistic coherence measures. One of them is a variation

of the classic Tweety example which is often discussed in the context of logics of

non-monotonic reasoning (cf. Brewka 1991). In Bovens and Hartmann’s version

this case is an example of how adding a piece of information to an existing set of

information can increase the coherence of all the information taken together.

Moreover, this test case aims at pointing out a general problem of the Glass–Olsson

coherence measure which will become obvious. The test case runs as follows:

imagine a pet named ‘‘Tweety’’ and consider the following two situations in which

you receive information about Tweety with probabilities according to the diagrams:

Table 3 Results for BonJour’s

raven case
X1 X2 Score

Csho 3.72 1 1

Csch 0.334 0 1

Cgo 0.108 0.027 1

Cmei 0.176 0.114 1

CSfit 0.402 0 1

CScar 0.207 0 1

CSkey 2.15 1 1

CSgoo NaN 1 0

CSroc 0.42 0.203 1

CSsch 0.292 0 1

CScar0 0.0299 0 1

CSnoz 0.232 0 1

CSpop 0.336 0 1

CSres 0.0376 0 1

CScru 0.269 0 1

CSgai NaN 1.17 0

CSrip 0.315 0.1 1

CSsho 0.392 0 1
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Situation 1:

x1.1 : Tweety is a bird.
x1.2 : Tweety is a ground dweller. .49 .49

x1.1 x1.2

.01

.01

Situation 2:

x2.1 : Tweety is a bird.
x2.2 : Tweety is a ground dweller.
x2.3 : Tweety is a penguin.

.49

.49 0

x2.1

x2.2 x2.3

.01
00

0

.01

According to Bovens and Hartmann, the set X2 ¼ fx2:1; x2:2; x2:3g should be

judged more coherent than the set X1 ¼ fx1:1; x1:2g since given our background

knowledge about penguins the information that Tweety is a penguin entails that

Tweety is a bird and that Tweety is a ground dweller. The values for all measures

are as follows (Table 4).

Quite obvious, this test case is a problem for Glass’ and Olsson’s measure since

the it treats both sets of propositions as equally coherent. It is therefore reasonable to

prefer Meijs’ generalized version of the Glass–Olsson measure as the proper

generalization since it masters the test case. As before, the two measures based on

Good’s and Gaifman’s support measures fail in this test case because they have non-

defined function values for X2.

3.4 Bovens and Hartmann’s Tokyo Murder Case

Another test case from Bovens and Hartmann (2003) is more extensive. In contrast

to the preceeding cases this one provides five different situations and three

different coherence assessments. Imagine the following scenario: a murder has

occured in Tokyo but the corpse has not been found yet. Draw a grid over the map

of the city consisting of 100 numbered squares with each square having the same

probability of being the location the corpse is to be found. Now consider the

following situations si where i 2 f1; . . .; 5g in which two independent and equally

reliable witnesses make reports xi:1 and xi:2 about the location of the corpse. The

suspected location is a closed interval of the respective square numbers as given in

the table below (Table 5).

Bovens and Hartmann give the following intuitive coherence assessments: X1 ¼
fx1:1; x1:2g should be more coherent than X2 ¼ fx2:1; x2:2g or X3 ¼ fx3:1; x3:2g. The
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sets X4 ¼ fx4:1; x4:2g and X5 ¼ fx5:1; x5:2g should have similar degrees of coherence.

Let us take a look at the results (Table 6).

Apparently, every coherence measure masters this test case. We can therefore

turn to the next case. Nevertheless, notice that it would have been possible and

desirable to have more coherence assessments than the ones provided by Bovens

and Hartmann. For instance, they could have indicated, in which of the situations

the reports are the most and the least coherent.

3.5 Bovens and Hartmann’s Culprit Case

A third test case by Bovens and Hartmann (2003) runs as follows: imagine that we

would like to identify a culprit in a murder case. Now consider the following three

situations in which we are confronted with reports from independent and equally

reliable witnesses:

Table 4 Results for Bovens and

Hartmann’s Tweety case
X1 X2 Score

Csho 0.04 4 1

Csch -1.4 0.168 1

Cgo 0.0101 0.0101 0

Cmei 0.0101 0.0151 1

CSfit -0.96 0.398 1

CScar -0.48 0.255 1

CSkey 0.04 18 1

CSgoo 0.0204 NaN 0

CSroc 0.02 0.51 1

CSsch -0.98 0.343 1

CScar0 -0.24 �0.035 1

CSnoz -0.96 0.101 1

CSpop -0.932 0.287 1

CSres -0.48 �0.0733 1

CScru -0.96 0.343 1

CSgai 0.51 NaN 0

CSrip -0.96 0.343 1

CSsho -4.64 �0.224 1

Table 5 Situations for Bovens and Hartmann’s Tokyo Murder case

s1 s2 s3 s4 s5

xi:1 50–60 22–55 20–61 41–60 39–61

xi:2 51–61 55–90 50–91 51–70 50–72
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Situation1:

x1.1 : The culprit was a woman.
x1.2 : The culprit had a Danish accent.
x1.3 : The culprit drove a Ford.

.0144

.0144 .0144

x1.1

x1.2 x1.3

.064
.096.096

.096

.216

Situation 2:

x2.1 : The culprit wore Coco Chanel shoes.
x2.2 : The culprit had a French accent.
x2.3 : The culprit drove a Renault.

0

0 0

x2.1

x2.2 x2.3

.064
00

0

.936

Situation 3:

x3.1 : The culprit wore Coco Chanel shoes.
x3.2 : The culprit had a French accent.
x3.3 : The culprit drove a Ford.

0

0 .236

x3.1

x3.2 x3.3

.064
0.223

0

.936

According to Bovens and Hartmann, the set X1 ¼ fx1:1; x1:2; x1:3g is less coherent

than the set X2 ¼ fx2:1; x2:2; x2:3g since in the second situation the reports fit together
better than in the first. The more interesting set however is X3 ¼ fx3:1; x3:2; x3:3g
because it seems unclear whether it is more or less coherent compared to the other

sets. In one respect, x3:1 and x3:2 fit together very well, but in the other x3:3 does not

really fit together with x3:1 or x3:2. However, since Bovens and Hartmann suspend

judgement with respect to X3 we follow them and only present the values for this set

but do not take them into consideration when evaluating the measures (Table 7).

Again, the two average mutual support measures based on Good’s and Gaifman’s

probabilistic measures of support fail in this test case due to non-defined function

values for X2 and X3. Every other coherence measure masters the test case. We can

therefore turn to the next one.

3.6 Glass’ Dodecahedron Case

Glass (2005) has offered a variation of the aforementioned die case by Akiba

(2000). His intention here is to point out the difficulty that most probabilistic

measures of coherence heavily depend on unconditional probabilities. Glass argues

that when assessing the coherence of some set of propositions the relations holding

between the propositions that are given by their conditional probabilities are more
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Table 6 Results for Bovens and

Hartmann’s Tokyo murder case
X1 X2 X3 X4 X5 Score

Csho 8.26 0.0817 0.68 2.5 2.27 1

Csch 0.917 -1.09 -0.167 0.398 0.356 1

Cgo 0.833 0.0145 0.167 0.333 0.353 1

Cmei 0.833 0.0145 0.167 0.333 0.353 1

CSfit 0.976 -0.896 -0.288 0.6 0.57 1

CScar 0.799 -0.321 -0.134 0.3 0.292 1

CSkey 8.26 0.0817 0.68 2.5 2.27 1

CSgoo 80.9 0.0547 0.552 4 3.65 1

CSroc 0.909 0.0286 0.286 0.5 0.522 1

CSsch 0.908 -0.945 -0.448 0.429 0.442 1

CScar0 0.0879 -0.112 -0.0564 0.06 0.0671 1

CSnoz 0.898 -0.494 -0.232 0.375 0.379 1

CSpop 0.863 -0.857 -0.213 0.471 0.435 1

CSres 0.0988 -0.173 -0.0972 0.075 0.0871 1

CScru 0.898 -0.918 -0.32 0.375 0.379 1

CSgai 9.79 0.669 0.812 1.6 1.61 1

CSrip 0.898 -0.495 -0.232 0.375 0.379 1

CSsho 0.957 -2.39 -0.444 0.569 0.557 1

Table 7 Results for Bovens and

Hartmann’s culprit case
X1 X2 X3 Score

Csho 1 244 1.78 1

Csch �9.64e�17 1.79 0.121 1

Cgo 0.0816 1 0.101 1

Cmei 0.208 1 0.325 1

CSfit �1.73e�17 1 0.298 1

CScar �2.78e�17 0.936 0.177 1

CSkey 1 15.6 1.93 1

CSgoo 1 NaN NaN 0

CSroc 0.34 1 0.462 1

CSsch �4.63e�17 1 0.0817 1

CScar0 �1.39e�17 0.0599 0.0219 1

CSnoz �1.39e�17 1 0.244 1

CSpop �4.02e�17 0.936 0.162 1

CSres �1.85e�17 0.064 0.0253 1

CScru �6.94e�17 1 0.127 1

CSgai 1.33 NaN NaN 0

CSrip 0.143 1 0.372 1

CSsho �8.4e�17 1 0.104 1
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important than their unconditional probabilities. His test case runs as follows.

Imagine two situations:

Situation 1: A fair die is rolled. Consider the following predictions:

x1:1: The die will come up 2.

x1:2: The die will come up 2 or 4.

Situation 2: A fair dodecahedron is rolled. Consider the following predictions:

x2:1: The dodecahedron will come up 2.

x2:2: The dodecahedron will come up 2 or 4.

The main difference between both situations is that the unconditional probabilities

of the predictions have changed. However, Glass’ intuition is that the coherence of

the sets X1 ¼ fx1:1; x1:2g and X2 ¼ fx2:1; x2:2g should be equal (Table 8).

This test case seems is a problem for all coherence measures except the Glass–

Olsson measure, its generalized version suggested by Meijs and the average mutual

support measures proposed by Roche and Schippers. All other measures do not

satisfy Glass’ coherence assessment. Notice that again the two measures based on

Good’s and Gaifman’s evidential support measures fail due to non-defined function

values for X1 and X2.

3.7 Meijs’ Samurai Sword Case

Meijs (2005) has provided a test case in which a set of propositions has to be

evaluated in two different situations. Meijs’ is not particularly precise about the

intuition behind this test case. However, it seems to based on the assumption that the

coherence of a set of proposition should be influenced by the propositions relative

overlap. The test case is based on the following scenario: imagine that a murder

occurred in a big city and we are interested in finding the murderer. The two

situations are as follows:

Situation 1: There are ten million independent and equally likely suspects. 1059

suspects are Japanese, 1059 suspects own a Samurai sword, nine suspects are

Japanese and own a Samurai sword. Now consider the following two propositions:

x1:1: The murderer is Japanese.

x1:2: The murderer owns a Samurai sword.

Situation 2: There are 100 independent and equally likely suspects. Ten suspects

are Japanese, ten suspects own a Samurai sword, nine suspects are Japanese and

own a Samurai sword. Again, consider the two propositions:

x2:1: The murderer is Japanese.

x2:2: The murderer owns a Samurai sword.

170 J. Koscholke

123



According to Meijs’ relative overlap intuition the set X1 ¼ fx1:1; x1:2g is less

coherent than the set X2 ¼ fx2:1; x2:2g. As we can see in the function values, only

few coherence measures are not in accordance with this coherence assessment

(Table 9).

Quite obviously, Shogenji’s measure fails in this test case. And since both X1 and

X2 contain 2 propositions, the average mutual support measure based on Keynes’

relevance quotient is identical to Shogenji’s coherence measure and must therefore

also fail. Moreover, since in the case of 2 propositions Schupbach’s measure is

ordinally equivalent to Shogenji’s measure being a simple log-transformation,

Schupbach’s measure must fail, too. Furthermore, the average mutual support

measure based on Popper’s measure of evidential support does not master this test

case, either. It is worth noticing that despite the relative overlap intuition the test

case is driven by the test case is also mastered by many average mutual support

measures.

3.8 Meijs’ Albino Rabbit Case

Meijs (2006) has constructed a test case in order to show that Fitelson’s measure of

coherence provides counter-intuitive results for certain sets of propositions. The test

case runs as follows: imagine a population of 102 rabbits living on an island and

consider the following two situations:

Table 8 Results for Glass’

dodecahedron case
X1 X2 Score

Csho 3 6 0

Csch 0.477 0.778 0

Cgo 0.5 0.5 1

Cmei 0.5 0.5 1

CSfit 0.833 0.917 0

CScar 0.5 0.625 0

CSkey 3 6 0

CSgoo NaN NaN 0

CSroc 0.5 0.5 1

CSsch 0.75 0.75 1

CScar0 0.111 0.0694 0

CSnoz 0.65 0.705 0

CSpop 0.604 0.789 0

CSres 0.15 0.0795 0

CScru 0.7 0.727 0

CSgai NaN NaN 0

CSrip 0.7 0.727 0

CSsho 0.807 0.861 0
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Situation 1: 101 rabbits are grey, 101 rabbits have two ears and 100 rabbits are

grey and have two ears. Randomly pick one of the rabbits and consider the

following two propositions:

x1:1: The rabbit is grey.

x1:2: The rabbit has two ears.

Situation 2: 100 rabbits are grey, 100 rabbits have two ears and 100 rabbits are

grey and have two ears. Randomly pick one of the rabbits and consider the same

two propositions:

x2:1: The rabbit is grey.

x2:2: The rabbit has two ears.

Since the set X2 ¼ fx2:1; x2:2g consist of logically equivalent propositions, Meijs

argues that it is more coherent than the set X1 ¼ fx1:1; x1:2g. Nevertheless, the set X1

is not so different from X2 regarding its degree of coherence since the propositions

in X1 still have a high joint probability due to a high absolute overlap of two-eared

rabbits in situation 1 (Table 10).

Apparently, this case is not only a problem for Fitelson’s measure. Meijs’ test

case is a problem for all coherence measures except the Glass–Olsson measure, its

Table 9 Results for Meijs’

samurai sword case
X1 X2 Score

Csho 80.3 9 0

Csch 1.9 0.954 0

Cgo 0.00427 0.818 1

Cmei 0.00427 0.818 1

CSfit 0.9756 0.9761 1

CScar 0.00839 0.8 1

CSkey 80.3 9 0

CSgoo 80.9 81 1

CSroc 0.0085 0.9 1

CSsch 0.00839 0.899 1

CScar0 8.89e-07 0.08 1

CSnoz 0.00839 0.889 1

CSpop 0.975 0.872 0

CSres 8.89e-07 0.0889 1

CScru 0.00839 0.889 1

CSgai 1.01 9 1

CSrip 0.00839 0.889 1

CSsho 0.479 0.954 1
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alternative generalization by Meijs’ and the average mutual measure by Roche.

Every other coherence measure assesses X1 as incoherent, which is counter-

intuitive. To see this more clearly, simply inspect the neutrality values t from Table 1.

Notice that again the two average mutual measures based on Good’s and Gaifman’s

measures do not master the test case due to non-defined function values for X2.

3.9 Meijs and Douven’s Plane Lottery Case

Meijs and Douven (2005) have developed a rather complicated test case in which a

person named ‘‘Kate’’ participates in a lottery. She enters a windowless plane that

either flies to the North Pole, the South Pole or New Zealand. Kate’s chances are as

follows: 4=100 for flying to the North Pole, 49=100 for flying to the South Pole and

47=100 for flying to New Zealand. The probability of seeing a penguin given she is

on the South Pole is 10=49, given she is in New Zealand is 1=47 and given she is on

the North Pole is 0. Suppose that after the random flight Kate leaves the plane not

knowing where she has landed. She faces two equally reliable people and an animal

she is unable to recognize. Now consider the following two situations, in which the

two people independently provide the following information:

Situation 1:

x1:1: The animal you see is a penguin.

x1:2: You are on the North Pole.

Table 10 Results for Meijs’

albino rabbit case
X1 X2 Score

Csho 0.999 1.02 0

Csch �4.26e�05 0.0086 0

Cgo 0.98 1 1

Cmei 0.98 1 1

CSfit �0.00498 1 0

CScar �9.71e�05 0.0196 0

CSkey 1 1.02 0

CSgoo 0.99 NaN 0

CSroc 0.99 1 1

CSsch �0.0099 1 0

CScar0 �9.61e�05 0.0192 0

CSnoz �0.0099 1 0

CSpop �9.71e�05 0.0196 0

CSres �0.0098 0.98 0

CScru �9.8e�05 1 0

CSgai 0.99 NaN 0

CSrip �0.0099 1 0

CSsho �0.00995 1 0
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Situation 2:

x2:1: The animal you see is a penguin.

x2:2: You are on the South Pole.

According to Meijs and Douven, the set X2 ¼ fx2:1; x2:2g is more coherent than the

set X1 ¼ fx1:1; x1:2g since there are no penguins on the Northpole (Table 11).

This test case is a problem for two measures, namely Schupbach’s coherence

measure and the average mutual support measure based on Shogenji’s measure of

epistemic justification. Both measures fail because they use logarithms to normalize

their function values but it is clear that limx!0ðlogðxÞÞ ¼ �1 is not a defined

function value. It is also worth noticing that Schupbach’s measure was supposed to

overcome certain difficulties of Shogenji’s coherence measure. In this case

surprisingly Shogenji’s coherence measure masters the test case while Schupbach’s

measure does not. Hence, the log-normalization of Schupbach’s measure could be

dropped in favour of a different kind of normalization.

3.10 Schupbach’s Robber Case

Schupbach (2011) has presented a test case inspired by Fitelson’s (2003) criticism

against Shogenji’s measure of coherence. The test case is supposed to show that

Shogenji’s measure has flaws due to the way it is generalized for sets containing

Table 11 Results for Meijs and

Douven’s plane lottery case
X1 X2 Score

Csho 0 1.86 1

Csch NaN 0.268 0

Cgo 0 0.2 1

Cmei 0 0.2 1

CSfit �1 0.587 1

CScar �0:075 0.257 1

CSkey 0 1.86 1

CSgoo 0 6.24 1

CSroc 0 0.557 1

CSsch �1 0.513 1

CScar0 �0:0044 0.0461 1

CSnoz �0:0798 0.328 1

CSpop �1 0.37 1

CSres �0:00476 0.0711 1

CScru �1 0.464 1

CSgai 0.925 3.36 1

CSrip �0:0826 0.464 1

CSsho NaN 0.573 0
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more than two propositions. In order to overcome this problem Schupbach has

offered his own alternative generalization of Shogenji’s measure. The test case runs

as follows: imagine eight suspects, each having the same probability of having

committed a robbery. Now consider the following two situations in which three

independent and equally reliable witnesses make reports about the possible robber:

Situation 1:

x1:1: The robbery was committed by suspect 1, 2 or 3.

x1:2: The robbery was committed by suspect 1, 2 or 4.

x1:3: The robbery was committed by suspect 1, 3 or 4.

Situation 2:

x2:1: The robbery was committed by suspect 1, 2 or 3.

x2:2: The robbery was committed by suspect 1, 4 or 5.

x2:3: The robbery was committed by suspect 1, 6 or 7.

According to Schupbach, X1 ¼ fx1:1; x1:2; x1:3g is more coherent than X2 ¼
fx2:1; x2:2; x2:3g since the agreement about who is the robber is much stronger in

the first situation. Let us take a look at the measures’ verdicts (Table 12).

As intended by Schupbach, this test case is a problem for Shogenji’s coherence

measure since the measure treats both X1 and X2 as equal regarding their coherence.

Schupbach’s alternative generalization of Shogenji’s measure, however, does the

trick just like most of the other measures. Quite surprisingly, the average mutual

support measure based on Keynes’ relevance quotient even treats X2 as more

coherent than the X1. Again, as in several other test cases, the average mutual

support measures based on Good’s and Gaifman’s support measures do not master

the test case due to non-defined function values for X1 and X2.

3.11 Siebel’s Pickpocketing Robber Case

The last test case is due to Siebel (2004). It is supposed to point out a general

problem for Fitelson’s average mutual support measure based on a variation of

Kemeny and Oppenheim’s factual support measure. Siebel’s intuition here is that

propositions which cannot be false together in a certain situation can nevertheless be

coherent. The test case is rather simple. Imagine the following situation:

Situation: There are ten independent and equally likely suspects for a murder.

Eight suspects committed a robbery, eight suspects committed a pickpocketing

and six committed both. Now consider the following two propositions:

x1: The murderer committed a robbery.

x2: The murderer committed a pickpocketing.
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Since there is a big absolute overlap of pickpocketing robbers, Siebel sees no reason

why the set X ¼ fx1; x2g should be judged incoherent. Albeit, apparently most

measures violate this intuition (Table 13).

These results are similar to the ones for Meijs’ albino rabbit case. The only

measures mastering the test case are the Glass–Olsson measure, Meijs’ alternative

generalization of this measure and Roche’s average mutual absolute support

measure. All other measures fail due to the fact that they judge the set X to be

incoherent. This can be seen inspecting the neutrality values t from Table 1.

3.12 Results

In the previous subsections a collection of 18 alleged probabilistic coherence

measures have been investigated with respect to their performances in 11 test cases.

The results for each measure in each test case Ti are presented in the following table.

As before, a score of 1 indicates a positive test case result while 0 indicates a

negative (Table 14).

The information provided by this table are twofold. First, the table indicates

which measures are the most successful. To find these measures, simply inspect the

lines for a low number of zeros or a high number of ones. The most successful

measures are Meijs’ (2005) generalized version of the Glass–Olsson measure (cf.

Glass 2002; Olsson 2002) and Roche’s (2013) average mutual support measure

Table 12 Results for

Schupbach’s robber case
X1 X2 Score

Csho 2.37 2.37 0

Csch 0.312 0.162 1

Cgo 0.25 0.143 1

Cmei 0.438 0.186 1

CSfit 0.582 0.255 1

CScar 0.198 0.188 1

CSkey 1.56 1.78 0

CSgoo NaN NaN 0

CSroc 0.542 0.5 1

CSsch 0.458 0.25 1

CScar0 0.0703 0.0312 1

CSnoz 0.392 0.133 1

CSpop 0.256 0.242 1

CSres 0.11 0.0411 1

CScru 0.311 0.254 1

CSgai NaN NaN 0

CSrip 0.533 0.276 1

CSsho 0.419 0.308 1
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based on a case-sensitive variation of the posterior probability. The weakest

measures are the two average mutual support measures based on Good’s (1984)

likelihood-ratio measure and on Gaifman’s (1979) measure of evidential support.

Second, the table indicates which test cases rule out the most measures. To find

these, simply inspect the columns for a low number of zero or a high number of

ones. The test cases in which most measures fail are Akiba’s (2000) die case, Meijs’

(2005) albino rabbit case, Glass’ (2005) dodecahedron case and Siebel’s (2004)

pickpocketing robber case.

To summarize the results of the antecedent investigation and in order to have a

rough quantitative overview of the overall performance of each measure we

calculated the relative score of each measure which is simply defined as the number

of mastered test cases divided by the total number of test cases. This score is

represented by the y-axis of the bar plot below. Calculating the relative score in this

manner, however, relies on the assumption that all test cases including their

corresponding coherence assessment are equally plausible since they has the same

impact on the relative score. This problem has already been mentioned in Sect. 3.

Here is a tentative approach to weaken this problem. Each out of n test cases Ti can

be assigned a weight wi 2 ½0; 1� according to its plausibility such that
Pn

i¼1 wi ¼ 1.

The values of the weights can then be adapted according to further philosophical

considerations regarding the plausibility of the provided coherence assessments. For

instance, the weight for a certain test case could be chosen depending on the

similarity to other test cases and the number of such cases. The values can also be

adapted according to empirical findings in cognitive-psychological tasks of

Table 13 Results for Siebel’s

pickpocketing robber case
X Score

Csho 0.937 0

Csch -0.028 0

Cgo 0.6 1

Cmei 0.6 1

CSfit -0.143 0

CScar -0.05 0

CSkey 0.937 0

CSgoo 0.75 0

CSroc 0.75 1

CSsch -0.25 0

CScar0 -0.04 0

CSnoz -0.25 0

CSpop -0.0516 0

CSres -0.2 0

CScru -0.0625 0

CSgai 0.8 0

CSrip -0.25 0

CSsho -0.289 0
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coherence assessments such as examined by Harris and Hahn (2009) or Jekel and

Koscholke (2013) which showed that lay people have quite strong coherence

intuitions when facing a test case like the ones presented above. This weighting

procedure can thus be considered a promising approach to making the relative score

both philosophically and empirically more accurate and to allow for incorporation

Table 14 Summary of the

results
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Csho 0 1 1 1 1 0 0 0 1 0 0

Csch 0 1 1 1 1 0 0 0 0 1 0

Cgo 0 1 0 1 1 1 1 1 1 1 1

Cmei 0 1 1 1 1 1 1 1 1 1 1

CSfit 0 1 1 1 1 0 1 0 1 1 0

CScar 0 1 1 1 1 0 1 0 1 1 0

CSkey 0 1 1 1 1 0 0 0 1 0 0

CSgoo 0 0 0 1 0 0 1 0 1 0 0

CSroc 0 1 1 1 1 1 1 1 1 1 1

CSsch 0 1 1 1 1 1 1 0 1 1 0

CScar0 0 1 1 1 1 0 1 0 1 1 0

CSnoz 0 1 1 1 1 0 1 0 1 1 0

CSpop 0 1 1 1 1 0 0 0 1 1 0

CSres 0 1 1 1 1 0 1 0 1 1 0

CScru 0 1 1 1 1 0 1 0 1 1 0

CSgai 0 0 0 1 0 0 1 0 1 0 0

CSrip 0 1 1 1 1 0 1 0 1 1 0

CSsho 0 1 1 1 1 0 1 0 0 1 0

Fig. 1 Relative scores for all tested coherence measures
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of future research. The plot below, however, shows the relative scores where each

weight wi ¼ wj for i; j	 n and concludes this section (Fig. 1).

4 Conclusion

The antecedent evaluation clearly indicates that there are two measures standing out

from the crowd, namely Meijs’ (2006) generalized relative overlap measure and

Roche’s (2013) average mutual support measure based on a case-sensitive notion of

absolute support. These two measures outperform other prominent probabilistic

coherence measures such as Shogenji’s (1999) deviation from independence

measure, Glass’ (2002) and Olsson’s (2002) relative overlap measure, Fitelson’s

(2004) coherence measure based on a variation of Kemeny and Oppenheim’s (1952)

measure of factual support and Douven and Meijs’ (2007) favourite average mutual

support measure based on Carnap’s (1950) difference measure of support.

Nevertheless, we need to be be cautious with respect to the conclusions to draw

from this evaluation. First, because all the results presented above rely on the

assumption that each test case together with its corresponding coherence assessment

is equally plausible. This assumption, as pointed out, has to be examined in future

research. Still, the weighting approach suggested for the relative score of each

measure enables us to incorporate future results. Second, we have to be cautious

because this evaluation is not the last word on probabilistic coherence measures.

Investigating the test case performance of the considered measures is only one

component of evaluating their adequacy. Another component is the analysis

adequacy constraints satisfied or violated by each measure (for such an overview cf.

Schippers 2014). Yet another component is the investigation of their empirical

adequacy, i.e. their ability to capture lay people’s coherence intuitions (cf. Harris

and Hahn 2009; Jekel and Koscholke 2013). Hence, this paper is not a final verdict

on the adequacy of the investigated measures. It is a contribution to the enterprise of

finding adequate probabilistic coherence measures.
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